\qquad

Quiz 6

Question 1. (6 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.
(a) If S is an orthogonal set of nonzero vectors, then S is linearly independent.

Solution: True.
(b) For an inner product vector space V of dimension n, we can always find an orthonormal set of n vectors.

Solution: True.
(c) A square matrix is orthogonal if and only if its column vectors form an orthonormal set.

Solution: True.

Question 2. (4 pts)

Let $u_{1}=(1,0,2), u_{2}=(-2,0,1)$ and $u_{3}=(0,1,0)$. We know that $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis of \mathbb{R}^{3}. Now suppose $v=(1,1,1)$. Find the coordinates of v with respect to the basis S.

Solution: Since u_{1}, u_{2} and u_{3} are orthogonal, we can use the formula

$$
v=\frac{\left\langle v, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}+\frac{\left\langle v, u_{2}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle} u_{2}+\frac{\left\langle v, u_{3}\right\rangle}{\left\langle u_{3}, u_{3}\right\rangle} u_{3}=\frac{3}{5} u_{1}+\frac{-1}{5} u_{2}+u_{3}
$$

It follows that

$$
[v]_{S}=\left[\begin{array}{c}
3 / 5 \\
-1 / 5 \\
1
\end{array}\right]
$$

Question 3. (10 pts)

Let U be the subspace of \mathbb{R}^{4} spanned by $v_{1}=(1,7,1,7), v_{2}=(0,7,2,7)$ and $v_{3}=$ $(1,8,1,6)$. Use the Gram-Schmidt process to find an orthonormal basis of U.

Solution: I will leave out the details.

$$
\begin{aligned}
w_{1} & =\frac{1}{10}(1,7,1,7) \\
w_{2} & =\frac{1}{\sqrt{2}}(-1,0,1,0) \\
w_{3} & =\frac{1}{\sqrt{2}}(0,1,0,-1)
\end{aligned}
$$

